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Vertex operator realization of symplectic and orthogonal
S-functions

T H Baker
Physics Department, University of Tasmania, GPO Box 252C Hobart, Australia 7001

Received 24 October 1995

Abstract. It is shown that symplectic and orthogonal Schur functions can be realized by the
action of the modes of certain vertex operators on the fundtiofhe properties of these vertex
operators allow one to reproduce the basic propreties of these types of symmetric functions. The
vertex operator modes are shown to obey free fermionic relations which provide applications
such as calculating products and plethysms as well as generating Hirota-type partial differential
equations (PDEs) which have symplecfidunctions asr functions.

1. Introduction

In this article, we endeavour to construct a vertex operator (VO) realization of symplectic
and orthogonalS-functions. This has been motivated by two things: analogous vertex
operator realizations of other types of symmetric functions, namely nossfahctions

[1], O-functions [2, 3], Hall-Littlewood functions [4] and Macdonald functions [5-8] and
their application to investigating properties of these functions; and the application of vertex
operators in the realizations and representations of (quantum) affine algebras [9-16]. For
S-functions (respectivelyD-functions), it is the fact that their VO realization is intimately
connected (via the boson—fermion correspondence [17]) to the algebra of free fermions
(respectively neutral free fermions) that provides a conduit to applications such as explaining
the generation of certain hierarchies of nonlinear PDEs (see [1, 18] and references therein),
and the derivation of determinantal identities frand Q-functions [3,19]. For generic
Macdonald functions and their various specializations (including Hall-Littlewood functions),
the modes of their relevant vertex operators do not enjoy such pleasant properties and hence
the above-mentioned applications are harder (if not impossible) to pursue. However, when
it comes to symplectic and orthogongifunctions, we shall see that the appropriate vertex
operators do indeed yield a simple algebraic structure §i€anctions) and hence can be
exploited in various applications. This has indeed been previously postulated in a recent
article [20].

We begin by establishing notation and reviewing the definitions and basic properties
of symplectic and orthogonal Schur functions, including their main determinantal
representations, and representations in terms of raising and lowering operators. We then
briefly summarize the standard boson—fermion correspondence, emphasizing the fact that
ordinary Schur functions can be generated in two equivalent (but distinct) ways, via free
fermionic expectation values using Wick’s theorem, and also via the action of vertex operator
modes on the ‘bosonic’ vacuufin Turning our attention back to symplectic and orthogonal
S-functions, we show how these can be generated by the action of certain modified vertex
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3100 T H Baker

operators acting of, and discover that the modes of these vertex operatsosobey the
anti-commutation relations of free fermions. This allows these types of functions to be
realized as fermionic expectation values in two different ways: one involving a modified
Hamiltonian, and one involving a modified dual vacuum. It is this latter perspective that
allows one to generate a hierarchy of Hirota equations which have sympfefiiiections

ast functions. We also include applications to calculating products and (outer) plethysms
of symplectic (or orthogonaly-functions.

1.1. Symplectic and orthogon&tunctions

There are several equivalent definitions of symplectic and orthogbhaictions. We shall
define them here as the skew of ordin&rjunctionss; by certain series af-functions (see

[21] for an excellent treatment of these functions and their application to the representation
theory of simple Lie algebras). The serids 5, C, andD are defined by

Al =[] = xix) = (=125, (x) (1.2)
i<j acA

B =@ =xixp™ = sp(x) (1.2)
i<j peB

C) =[] —xxp) =D (=172, (x) (1.3)
i<j yeC

D) =[[A-xx)™ =) ss(x) (1.4)
i<j seD

where A and C are sets of partitions of the forrtuy, az,...lag + 1, a2 + 1,...) and
(a1+1,a2+1,...la1,a,...), respectively, in Frobenius notatioB, is the set of partitions
whose distinct parts are repeated an even number of timespaisdthe set of partitions
whose parts are even. We restrict ourselves to the case of a (countably) infinite number
of indeterminatesxy, x, x3, ...), in order to avoid having to deal with modification rules
[22]. The symplectic and orthogon&Hunctionssp;, o; can be defined as

spr= (A =siya= Y (=D

acA
0, =[A] =830 = Z(—l)lyl/zs,\/y- (1.5)
yeC
These can be inverted, so that= sp,,5, s, = o,/p. Let us note that various Macdonald
identities involve symplectic and orthogoné&ifunctions, which can be associated with
identities between matrix elements of standard vertex operators [23].
There are analogues of the Jacobi—Trudi identity, due to Weyl [24], which take the form

Ry, Nygr1+hy—1 Rygq2 +hy—2 s Moggn—1 F o
h)»g*l h)\z + hAZ—Z h)»2+l + h)\273 e h}\.2+n72 + hszn
Spy = . . . . .
Nymtn-1) Moy—n=2) + Moymn Mppy—n=3) + hp—uyy -+ ha, +hip—2n-2)
(1.6)
and a similar one foo; but with h; — h; — h;_,. There is also a dual identity [25]
e, en+1+ €1 en+2 T ex-2 cor eatn—1t en—n-1

€n,—1 e, tex-2 €1t ex,-3 e €rptn—2 1 €i—n
Oy = . .

€~  Ch—(-2 T €,—n €r-u-3) te-m+) " €, Tl -2
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and a similar one fosp,, but withe; — ¢; —e;_». Herel’ denotes the conjugate partition of
X. If w denotes the ring homomorphism defined on the power suras(py) = (—=1)"1p,,
then it follows from definitions (1.5) thab(spy) = oy, w(03) = spy.

There are also Giambelli formulae (see [26] and references therein) taking the form

SPip) = delspe,p,) 0ip) = delop))- 1.7)
In fact, the above determinantal expansions are but the simplest cases of more general
expansions in terms of strip decompositions of partitions [20, 27]. From the determinantal
expression (1.6), one-part sympleciunctions have the following expansion in terms of
normal S-functions:

k
$P1) = hnek + ) (=1 (i + hy-i)er
i=1
k

S(n,16) T Z(_l)i(s(nfi,l"*") + S(—i+1,25--1)). (1.8)
im1

Let R;; be a raising operator for partitions, so that fo j,
Rl‘j()\.l,...,)\.i,...,)\.j,...) Z()\l,...,)\.,“l‘l,...,)\j -1..)

and extend this to an action on the functions= h;, h,, - -- via R;jh, = hg,,. Then we
have the raising operator formula [28]

Sy = l_[(l — Rij)h)w (19)
i<j
If we let L;; be a lowering operator for partitions such that fog j,
LijMy o oshis ey hjy o) =y e i =100 a5 — 1,00
(whereL;; subtracts 2 from théth label) and extend this th, as above, then the following
identities hold [29]:

spr=[]A-Lip[[A - Ra)hs (1.10)
i<j k<l
o, =[]@-Lip []JA— Ridhs. (1.11)
i<j k<l

There are also Cauchy-type formulae of the form [24, 25]
Y sp@s(y) =@ —xiy [ [ =y
A i,j

k<l

Y o@sy) =@ —xyp) A= new).
A ij

k<l

1.2. Vertex operator realization ¢f-functions

We shall now briefly review the normal boson—fermion correspondence [1,30], paying
particular attention to the two different ways of generatfyfunctions. This will aid in
understanding the symplectic (orthogonal) version of the boson—fermion correspondence
which we introduce in the next section. Define vertex operators

X(z) = exp(Z Pn;x)zn) exp< _ Z 3p8(x)zn> eiqzao
n=1 n

n=1

X*(Z) _ eXp( _ Z pn’EX) Zn> eXp(Z ; a n)zao e*iq
n=1

Z
= Ipn(x)
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wherep,(x) = ), x]' are power sums and the operatags ¢ obey |, ag] = +/—1. If one
expands these vertex operators in modes

X@ =) X" X'@=y Xz

nez neZz
then we have foh = (A1, ..., 4,)
5.8 = Xpprp-1Xopip2--- Xp, - 1 (1.12)
(=DM 7 = X7 4 X2 gy X0 - L (1.13)

while for A = (i1, ...,/ | —1,...,j,— 1

(=D gy = Xy X X e Xy - L (1.14)
The reason for the ‘momentum’ factors in (1.12) and (1.13) is due to their presence in the
vertex operatorsX (z) and X*(z) (which makes the modes obey free fermionic relations

(1.16)). When no confusion arises, we shall drop these momentum factors to make things
more readable. To see why (1.12) holds for instance, note that

dz _ _ A
Xyt p—1Xoptp—2--- Xz, - 1= / P =D g, "X(z1) - X(zp) - 1

d . ‘ < |
[ el )
! n=1

i<j
dZ — Y < ZJ> . i .
= [ = R _ Bip - hy 2 g @
Z 21 Zp D Zi ljz;p »%1 Zp
= l—[(l — Rij)h;. - € (1.15)
i<j
which in turn iss; - €77 by (1.9).
However, you can also generaig via expectation values of free fermions. Recall
[1] that the algebrad of free fermions is generated by;, ¥, i € Z satisfying the anti-
commutation relations
Wiw}=0={(y v} (W v)) =5 (1.16)
There is a Fock representatich of this algebra with a vacuun®) which satisfies
¥:i10)=0 (<0 Yi10)=0 (>0
Oy; =0 (>0 Oly=0 @ <0). (1.17)

The following states arg!(co) highest weight states (which, as we shall later see, correspond
to the states'& 1)

Vp—1---¥ol0) p>0

Ip) =1 10) p=0 (1.18)
Ypo¥hI00 p <O

The corresponding dual states take the form

(0%“.@4 p>0

(pl =1 (0l p=0 (1.19)
Oly—1--- 9, p<0.
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Using products of free fermions, we can define generatfyys= » ,_, iy, ,, n # 0,
which obey [1]

[Hna Hm] = n8n+m,0 [an Wz] = 1aﬁifn [Hna E”,*] = —¢5*+n~
Finally, define the Hamiltoniaf (x) = Zjél(l/j)pj(x)Hj. Then using Wick’s theorem,
it is seen that the-function s, can be constructed from the following expectation values:

5. = (Ple" Y p 1V p-2 ¥, 10) (1.20)

(_1)WS)\’ = (_p| eH(X) wi(kfrp)wi(lfrpfl) e wi()‘p+1)|o> (121)
and

(=D Trsy = (0] €Ty oy, - 5, 0). (1.22)

To see why for example, (1.12) and (1.20) are the same, first note that, using
ey (z) e = exp(an (X)z”/n>¢(Z)

the expectation value on the right-hand side of (1.20) can be rewritten as

dz _ _ _ I
/jzl(/\ﬁp 1)"'pr”(pW(Zl)'"W(Zp)|0)exp(2p (X)(ZZ'F"""ZZ))
n=1

Z n
but since [1]

(plY(z) - ¥ IO =[G —2) (1.23)

<j

we get exactly the same factors that appear in (1.15). So we can prSeuoetions either
by considering the action of the modés,, X; on 1, or by computing the expectation
value of free fermiong);, v with a time evolution like the Hamiltonian ekH (x)). The
normal ordering of the vertex operatakyz) and X*(z) generates the same factors as the
‘correlation function’ (1.23). The rationale for explaining the above in great detail is that
we shall generate, for example, the sympledttunctions as the action of the modes of
certain vertex operatorB(z) , I'*(z) on 1. We will then show that you can also consider
this aseither (i) the expectation of free fermions with a ‘modified’ Hamiltonian éXp (x))
or (ii) the expectation of free fermions with the ordinary Hamiltonian @xpr)), but with
a ‘modified’ bra vacuumo|’. It is this latter viewpoint which will allow a bilinear identity
to be generated, and hence a hierarchy of Hirota equations.

2. Vertex operator realization of symplectic and orthogonalS-functions

First note that we can write the seriggx) (1.1), in the form
1
Ax) = exp( 5 (p2j — p~2)>.
If D (not to be confused with the sét of partitions defined after (1.4)) denotes the adjoint

of multiplication under the norma-function inner product (i.eD(s,)s; = sx,,) then, due
to the fact thatD(a) D(b) = D(ab), we have

spy. = Spy4 = D(A)s,,

1
= exp(Z ~(D(p2)) — DZ(Pj)))&

=12

a j 0
exp( ( _ ))sx.
j; apa; 28pj2
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Suppose we now express the ordingrjunction s, in the form of modesx,, acting on1.
What does the corresponding symplectic functipy then look like when we transfer the
above exponential operator through the mo#lego act onl1? First of all, we are going to
need the next term in the Baker—Cambell-Hansdorff formula, namely

et B @A — A BI+[A,B]. Bl/ 2+
Thus, letting

3 j 9

we see that
X e k=X exp( - Z: BZH) (2.1)
j=1 J
e“x*x)e X = (1—12)X*(z)exp<;;jzf>. (2.2)

So, in terms of the modeX,, the symplectic functions take the form (ignoring the
momentum factor'é&? for the moment)

dz _ - -
Spr = /711(/\14—!7 l)"'ZpkpeKX(Zl)"‘X(Zp)'1

dz gin _
= /le(“” Voo T]a -z X X -1 (2.3)

i<j
where the factors(l — z;z;) arise from shuffling the extraneous differential operators
appearing in (2.1) through the operatdf$z1), ..., X (z,). Thus we have

spy. = 1_[(1 — Lij)sk = 1_[(1 - Llj)(l - Rij)h)‘
i<j i<j

recovering (1.10). In a similar fashion, through using (2.2), one obtains the ‘dual’ expression

dz _ _
(—D)spy = / —a Catr) o Ot D P X (20) X ¥ (20) -+ X*(zp) - 1

dz _ _
— / ?Zl Ratp) . z (Ap+1) 1_[(1 _ ZiZj)X*(Zl)X*(ZZ) . X*(Zp) 1
i<j
so thatsp,s = [[;<;(1—Lij)sy. By this, we mean thak;;sy = sy, SO that, for example,
L12S(241) = S(221).
Turning to the orthogonal case, and writing the se€iés) appearing in (1.3) as

1
Clx) = exp( -2 TG pf))
j=1
we see that
dz _spe _
0; = f ?Zzl (at+p=1) 'zp'\” l—[(l_ 2i2))X(z1) - X(zp) - 1
i<j

which implies (1.11)

o, =[]A=Lipsi =[J@—Lip [[A = R

i<j i<j k<l

A similar calculation gives;, = [[,_;(1 — L;;)sy.

i<j
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Now, if you take a close look at expression (2.3) f@r, and normal order the& (z)
VOs appearing there, you have in fact

sm_f%zl—h Sl [ () <1—> exp( Pul )( -+z,’§)>. (2.4)

i<j

Let us seek to achieve the same expression as this one by applying the modes of some
‘modified’ VO to 1. Define

[e¢]

F(z)_exp(zp”ri) )exp( Za (x) ”+z”))éqz“°

n=

r%m:wl—z5@m< }:p“) ) <§:a;zj@”+w@)z%em. (2.5)

n=1

Then from the two VO normal-order relation

FHrw) =@ —-w@-zw) : I'x)'(w):
=(z—-—w)(1—-zw) exp(g p”T(x)(Zn + wn)>

< = 3 g €0 ) e
(2.6)

or, to be more precise, it VO generalization, you see that (again ignoring the momentum
factor é”? which should appear on the left-hand side)

dz _ - -
Sph = / 711 (= p R NCIEE [(zp) - 1.

Hence, if the vertex operatdr(z) has the mode expansidi(z) = Y_
the result

1z In2", we have

spr. = Dogqp-1lipp-2- - F/\p -1 (2.7

The same consideration applies for the dual and Giambelli forms, 3t(if) has the mode
expansion™(z) =Y _, [*z7" then

nez n
(=D)Msp, =T* r* T
P =1 _Gutp)t —Gatp-1

(_1)/1+-.<jrsp}\ = F—j1 e r‘jjr r; T

1

o 1 (2.8)
1. (2.9)

Now we know that the modes;, X} obey free fermionic anti-commutation relations. What
about the mode§; and Fj’f? It turns out that thewlso obey free fermionic relations. The
calculations which show this are almost the same as forStfienction case. From the
antisymmetry between andw in equation (2.6), it is clear that(z)['(w) + ' (w)I'(z) = 0.
Thus, in terms of modegI';, I';} = 0. Similarly, we have

M (T (w) = (1 — (1 — wd)w L — z~H(1 — zw) exp( = ”"’E’C) @+ w"))
n=1
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which is also antisymmetric i andw, so that{I'}, I'} = 0. Finally, from the relations

n

F()M*w) = (1—wd)(d - zw)_li(:L —w/cj/z) exp( ; Pr(x) (" = w"))

" 1 2 1 1 o Pn(X) n_on
I*W)l) = (1 - w1 - zw) (l_z/w)exp<; P C w)>

and the fact that

/ 1 n
(11—qu/z) T A gw Z(%) =9 (%)

nez

we have
(F@. T w)) = A - wd)(d - zw)‘leXp(Z Pl o _ w”))8(w> _ 5(“’)
n=1 n Z <

where we have used the standard trick of noting that for any funcfipnve have
fw)s(w/z) = f(z)é(w/z). Thus {F,-,FJ’F} = §;;. So, the moded, F;.* obey free
fermionic relations just like the modeg, X;. This then begs the question: can a symplectic
S-function be generated as the expectation value of a Hamiltonian and free fergiiions
Y7 as can be done for the-function case (see (1.22))? The answer is yes, but their are
two ways you can view it, as we shall see in the next section.

Orthogonal functions can be treated in exactly the same way, so that if

o0

— _ 2 = fﬁi&f} n _ 0 —-n n iqg oo
Q) =1 z)exp(é . z)exp( Zapn(x)(z +z)>e‘z

n=1

(o]

@@= exp( B Z Pn;x)zn) exp( Z apa(x) @+ ZH)>Z_% e
n=1 n

n=1

have modal expansior@(z) = ), ., 2.2", Q*(2) = )_,c, Qiz™", then

nez
05. = oyt p-1Q,4p-2-- 2, - 1
(=)Mou = Q*f()hler)Qi(kngpfl) T Qi(x,,ﬂ) -1
(_1)j1+--<jr0)\ — th e Qij,.Ql} Q- L
The modes2;, @27 also obey free fermionic relations. Indeed, it can be seen that they are
related to the modes;, I'; by

Q=0,-T,2 Q=) Tiy

iz0

or equivalently

Ty=) Qo T =Q — Q.

i=0

From now on, we restrict our attention to the symplectic case, as the orthogonal case can
be treated in an identical fashion.
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3. Approach 1: modified Hamiltonian

Returning to the question of whether symplecfidunctions can be constructed from an
expectation value, the first way is to consider the expectation value of the free fergnions
w;‘, with the modified time evolution operator e, (x)) but with the standard vacug),

and|0) which obey (1.17). The necessary Hamiltonian is (as the reader might have already
guessed)

1
Hy(x) =) = (pj(x)H; + 3 Hpj — 3HP).
j>1
Why is this the right Hamiltonian? Because the time evolution of the fermionic currents

¥ (2), ¥*(z) generates the correct terms to mimic the mode calculations we performed in
the previous section. For example, you can check that

1 )
exXp(H (X)) (2) exp(— HA(X))—eXp<Zp’]() )vf(z)exp( Zjsz’) (3.1)

j=1 j=>1

exp(HA (X)) V™ (z) exp(—Hu(x)) = (1 — z?) eXp( Z Pj( x) ) @)

j=1
H: .
xexp(Z,’ﬂ) (3.2)
=

Thus if you look at the expectation value

X dZ - 1 - —Ap X
(Pl €My 1Yz ¥, 10) =/?z1“ TP (pl €Y (z1) - ¥ (2,)10)

insert factors ex@H,(x)) ex)(—Ha(x)) everywhere, and then use (3.1), then the above
expectation value takes the form

dz _Gyip— - 1 1 .
/ jzl (Gat+p=1) "sz”(pllﬂ(zl) exp< — Z jsz{>¢(z2) exp( — Z jH,»zé)

) izl >t
1. p; () ;
xexp( =Y “Hiz)_y | (z)I0 exp( > @+ +2)).
iz =

You then shuffle the remaining exponentials away using the (normal) time evolution

exp< -y ;Hﬂf)ww) exp<Z ]1,sz1> = A - zw)y ()

j>1 j>1
to recover
dz _ _ -
/?Zl(kﬁ-[) l)"'zp)\” H(l—ziz_]-)(plllf(Z1)"'1//(Zp)|0>
i<j
xexp( p +zf))
j=1
d
_ [ pn(l_% )(1-2)
Z i<j Zi
xexp< pj( ) T+ +z”)> by (1.23)
j=1

= spy by (2.4).
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Similar considerations apply for the dual and Giambelli forms §pf. Although this
modified HamiltonianH,4 (x) allow symplecticS-functions to be expressed as expectation
values of free fermions, one important disadvantage of this formulation is that Wick's
theorem no longer applies, for the simple reason that the time evolutions (3.1) and (3.2)
are no longer linear in free fermions, like the normal case (recall that the opefjtae
bilinear iny;, ¥). Nevertheless, one can still get the known determinantal formg;of

either from the modal expressions, or from the expectation values shown above (see the
appendix for an example).

4. Approach 2: modified vacuum

The second approach is to leave the Hamiltonian alone and consider some sort of modified
fermionic vacuum, in the sense that some of the equations in (1.17) are no longer valid.

4.1. S-function case

First, we shall discuss how the fermionic inner product and ‘mod$fufiction) inner
product are related. Given states of the farifd), »|0) wherea, b € A, the inner product
of these states is just given lgy|0), 5|0)) = (0]a*b|0). Turning to the modes, define an
operatorl* (the dual vacuum) so that its action on the functibrs just1* -1 = 1. Then
the inner product of states of the form- 1, B - 1, where A and B are composed of the
modesX;, Xj* isgivenby(A-1,B-1) = (1, A*B-1) = 1*A*B - 1. Note that in the
symmetric function sense&*(z) really is the adjoint operator ok (z), because the ajoint
of p, is just D(p,) = nd/dp, andvice versa(one also must definéxg)* = —ap, and
(@)* = —q). This inner product thus reproduces the standgfdinction inner product
under which(s;,, s,,) = 8,,. We shall return to this later.

Now let us clarify the relationship between the fermionic vacu@mand thegl(oco)
highest weight statep) and their modal counterparts 1 arléefor the normal BFC. Recall
the definition (1.18) of the ketgp). By replacing they;’s in the above definitions with
X;’s, and|0) with 1, one recovers the ‘state'?é - 1, which can be seen by setting= 0 in
(1.12) and (1.13) for the casgs> 0 andp < 0, respectively. Also, from definition (1.19)
of the bras(p|, the replacement of the;’s with X;’s here (along with replacing0| with
1*) yields the dual ‘statesl* - e '74. To see this, take > 0, so that

dz _
1*. XS o X;—l =1". / ?Z:?Z% cee Z;j lX*(Zl)X*(ZZ) ce X*(Zp)

. i dz Zj pi(x) ,
=1".e quzn(l—zi)exp(z jj (z{+-~-+z/,)>

i<j i1

=1".e P, (4.1)

Here, we are using the property that the dual vacutins killed by power sumsp, (x),
just as the vacuunt is killed by 3/dp, (x).

We have seen how the statgs| and |p) are formed in the ‘modal’ language. Let us
now see how the modal vacdaand1* are annihilated by the modes;, X7. Indeed, we
have the equivalent of (1.17) of the form

X;-1=0 (j <0 X:-1=0 (j>0)
1*.X;=0 (j >0 1*.X:=0 (j<O. (4.2)
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To see this, we have for example

d . ) d ,
v ox = [Coixo=e [Tot Y pepa =0 itjzo

z z n=0
When we turn to the symplectic case, we will see that (4.2) no longer holds, and this is
why it looks like the vacuum is ‘modified’.

4.2. Symplecti$-function case

First, let us take a look at the inner product between states of the forrh where A is
composed of modeB;, I'}. Define it in the normal way(A -1, B-1) = (1, A*B - 1) =
1*A*B - 1 where A* is formed from A by reversing the order of all the modes and
interchangingl’; <> I'’. Due to the fact that the modé$, I'; obey free fermion relations,

all the different states in (2.7), (2.8), or (2.9) are clearly orthonormal. Thus we have a
new inner product on the ring of symmetric functions under which sympléetimctions

are orthonormal. However, this is not a particularly nice inner product for several reasons.
First, by looking at the expressions for the vertex operafty, andI'*(z) in (2.5),I'*(z)

is not the adjoint ofl"(z) in the normal symmetric function sense (with(p,) being the
adjoint of p,). Thus the adjoints of symmetric functions with respect to the inner product
(-,-) are no longer the normal ones. The inner produgct)’ is still positive definite for

the normalS-functions i.e. (s;, s3)’ > 0 VA. Second, it exhibits pathological behaviour in
the sense that there exists a state 1 which represents the symmetric function 0, and a
stateE - 1 which represents a non-zero symmetric function, suchbatl, £ - 1)’ # 0.

Taking a look at the properties of the vacliaand 1*, note that although (4.2) is still
satisfied with the mode§;, I'}, (4.2) is not. This is clear from the appearance of the
termz”, n > 0 in the annihilation part of the vertex operatdtr&), I'*(z). Let us look at
an example which will exhibit this property, and the strange behaviour, of discussed
above. We have the following vacuum expectation valuejfor O:

(TiTy) == (I - 4,1 - 1) = / dz dw
‘ Zw

77w/l T (w) - 1

= / dis)wz_iwj(l A —zw) A —w/2) =882 (4.3)

Thus for examplegI'_,_; - 1, T'; - 1)’ = —1. In terms of symplecti$-functions, forj > 0,
[j-1is justspu) = h,, butI'_»_; - 1is zero (since (4.2) still holds) giving a prime example
of the bad behaviour of the inner produet-)’.

What about modal representations of the statés.d and1* - e 77?2 A calculation
such as that leading to (4.1) shows that

Fp1---Tol0)  p>0
gri.1=110) p=0
ry..-T%,(0) p < 0.
However, 1* - € 77 has no equivalent representation to (1.19), due to the presence of the
z" in the differential part off"(z), andI"'*(z).
Let us now turn back to the free fermiows, ¥, and the bra and ket®), |0) and see
how the above ‘modal’ formalism can be translated back into the language of free fermions.

The fundamental difference we need in the symplectic case is to replace tk@ lbrigh a
new bra(0|" so that, instead of (1.17), we only have

¥il0)=0 (<0 Y100 =0 (i >0).
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There are, however, some special conditiong@h (or equivalentlyl*) so that instead of
(YY) = 8i, j = 0 we have (cf (4.3)Xv/ ;) = 8;j — é;—j—2 or in terms of currents,
instead of(y¥*(z)¥ (w)) = (1 — w/z)~ %, we have

W@y W) = (0/¥* @Y w)|0) = 1-zH1 - zw) 'L - w/z)™"
This comes about because
(P} + V7 515,) =0 (4.4)

(or equivalently, because it can be seen that e 79 is annihilated on the right by
[*(z) +z72*2I*(z™1) so that, for example, foj > 0, (y*, ,¥7) = —(y7yF) = -1.
Similarly, 1* - €774 is annihilated byl'(z) — z=2t?’I'(z 1) so that

(pI'(Yj —¥—j-242p) = 0. (4.5)

The conditions (4.4) and (4.5) are enough to ensure that the expectation values of currents
¥ (2), ¥*(z) are the same as their modal counterparts, for example fer0,

(PI'Y(z1) - Y @)W (W) -+ Y (w)[0) = 2§ - Ly WY Wiy l_[(l —w?)
y [1io; Q= zizp)X = zj/z0) [T o, (L — wew) (1 — wye/wy)
[1i,;Q—zw)d—w;/z) '

From this and similar formulae, it follows that the symplecfiéunctions can be expressed
as the ‘modified’ expectation value of a string¥fs with the normal Hamiltonian H (x),
so that (cf (1.20))

spr = (pl €54 1V, p2- -, 10)

(4.6)

and so on.

5. Applications

As an application of the above VO construction of the symplectic and orthogonal
S-functions, we shall show how multiplication and plethysms of these types of symmetric
functions can be calculated in the spirit of [31,32]. We provide details for the symplectic
case only, the orthogonal case being almost identical.

5.1. Multiplication

Multiplication of symplectic and orthogon&kHunctions can be carried out using the Newell—
Littlewood rules [33, 34] (for a nice proof see [21])

A
SPASPy = ZSP(/\/E)~(M/E) = Z CeaCepCopSPr
& Eaft
0101 = D 0G/61(u/6) = Y ChaCliyClyOr- (5.1)
£ £apt

Alternatively, we can use the vertex operator formalism to express the product of two
symplectic functions in terms of symplectic functions associated with non-standard partitions
which can be modified according to the usual rules (i.e. the same as the rules for non-standard
S-functions).



Symplectic and orthogonal-functions 3111

Note that the generating function ferpart symplecticS-functionssp, ,....»,) IS given
by

n r
R(za,...,z,)= Z Py, ... n,4)Z11"'Zf

= l_[(l—ZiZj)(l—Zj/Zi)eXp< IZ(Z’{+~-~+zf))
=1

i<j
=T (z1) - Tz )n(za, ..., 2)
where
8 o _ o
n(zl,__,,zr)zexp(za(Z/l<+zl—k+...+zf+zrk))zlao r+l,..zrotoe rig
k>1 9Pk

Upon using the relation

N - w/zi
n(z1, ..., z)0(w) = E A d_ w/Zi)F(w)n(Zl, ey 2r)

we see that

SPny,...n.)SP(ma, ..., mp) = Z SPx(a;b)
{aij} {bij}

wherei(a; b) = (A1, ..., Ar, Apgts - -+, Argp) With

P
)»i=ni+2(bik—aik) 1<i<r
=1

,
Appi =m; — Z(bki + axi) 1<i<p.
=1

The indicesy;;, bij, 1<i <r, 1< j < p, are subject to the constraints
i—1 r i—1
Oéaijémj+p—j—zakj Oébijémj—zakj—zbkj
k=1 k=1 k=1
which arise from the fact that for a partition (standard or non-standaed)(ay, . . ., ),
spe is non-zero only ife; > —(p —i).

5.2. Plethysms

Another application of the above VO construction is for calculating (outer) plethysms of
symplectic and orthogonal-functions. By the plethysnf ® g of two symmetric functions
f, g € A, we mean expresg in terms of power sums and then make the substitution
pj(x) = f(x7). The mappingp; : f(x) — f(x/)is normally called the Adam’s operation.
Much work has been done on the calculation of plethysmsStfunctions (see [28] and
references therein), and to a lesser extent for symplectic and orthafyfumadtions [33, 35].
Explicit formulae for the action of the Adam’s operatg; on symplectic and orthogonal
S-functions have been developed, in terms of the actiom;adn normalS-functions. Here,
we propose another method for calculating this action, by proceeding in the same vein as
[32].

We now examine the details for the case of calculatimgx?). Begin by lettingl’® (z)
denote the operatdr(z) given in (2.5) withx — x2, z — z2. The modes"® generate
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the functionsp, (x?) in an analogous manner to (2.7). Note that we can write this as
'@ (z) = I'(2)&(z) where

P(:) = PO (~2) = 20+ 2) exp<zz/7z-f> exp( -2y z—"‘>>
J . OPi
Xei2q (_1)aoz2ao+1

— < —ig (_1y20—1 /i j —j)
§0 =535 D exp(Z apj(z +z77)

J

with Zj’ = Zjeven Thus, if we expressp; (x?) as (the integral of) a product of currents

I'@(z;) acting onl, we can move the operatof%z;) across the operatoﬂ%(zi) using the
relation
2

—w
(1-w??)(1-w?/z?)

These operators(z;) will then act onl producing factors of'¢, leaving just the currents
I'(z) =T'(z)['(—z). For the simplest case of a one-part partition, we have

o= [ E T b=t YL/, e
Pn) = z (1 T z2) 4 =53 < n—j .
iz

£ (w) = F(w)E(2).

However, if we expand™(z) = 3, .22 7%, thenl', = 3., 1(~1)/T',_1_;T;. Hence

neZ - n ]
n—j—-1 . ) n n—j )
Py =Y Y (=D gl e =Y (D spanzjin.  (5.2)
70 k=—1 =0 k=0

From (5.2) and the result

n n—j

Py = Z Z SP(2n—2j—k.k)

j=0 k=0
we have the plethysm

Py ® 5P = 3(spuy(x®) + sp)

_ 1+ DY
=Sp@n) + Sp@n-22 +---+ fsp(n,n) + Sp@en-31) + Sp@2n-53 + -
a+-nm 1+ D™ A+ -nm
+——F—5P-1n-1 t 5P+ ———F=—5P11)
2 2 2
a+-nm
+72 SP©)-

This procedure can be generalized in exactly the same way as was done in [32] to enable
one to calculatep; (x") for generalr andr.

5.3. Hirota polynomials

As a final application, we shall construct a generating function for certain Hirota
polynomials, which have symplecti&functions as tau functions. We do this by mimicking
the standard construction of the KP hierarchy as the orbjDjpfor equivalentlyl in the
modal language) under the group associated witho), the only difference being that we
use the modified bralp)’ instead of the usual ones.
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We begin by noting that equations (1.21) in [1] become

('Y (k) €"Wal0) = kP (p — 1/~ Wg )

(pl'y (k) € Val0) = (1 — kP)k? (1) Tk D+<tNg0). (5.3)
To see this, just do the corresponding modal calculation using the result (4.6). The identities
(5.3) permit one to derive the bilinear identity for the hierarchy in the usual way, which
we now do. It is important to note that since we are using standard free fermions and the

standard ketsp), the crucial first step remains unchanged in that the following equation is
still valid:

Y wiglp) ® ¥iglp) = 0.

€7
We then apply €% @ e/™ and take the inner product wittp + 1/’ ® (p — 1|/, getting
(upon application of (5.3))

/ %(1 — ke (x —eh ) —etk)T(X + ek + (k) =0 (5.4)

wheree (k) = (k, k?/2,k%/3,...) and&(x, k) = > ;>1Xjk/. With the usual transformation

x — x +y, x - x — y this can be rewritten in Hirota form, namely

Z Sty (—2y)S(g)(D) (S(i+q+l)([)) - S(i+q+3)(5)> eXp( ynDn>f -1 =0.

i,q=0

Here S, (x) is the polynomial obtained from th&-functions, (x) by replacingp; (x) — jx;.
Changing variables in the same way as was done in [36] one obtains the Hirota equations
P, (D)t - T = 0 with

Pi(D) =Y Si/i)(—D/2)S()(D)(Sii+4+1 (D) = Sii1g13/(D)). (5.5)
i,q=0

As one can see, although the sum owés finite (stopping ai = |1|), ¢ is not constrained
at all. Thus the Hirota polynomials are (inhomogeneous) of infinite order.

Example Settings = (1%) in (5.8), you get
Pas)(D) = Sas)(=D/2) (S (D) = S3(D)) + Sty (D) (S2y(D) = Sy (D)) + - )
+Sa2)(=D/2) (S (D) — S (D)) + St (D)(S3 (D) — S (D) + - ).
(5.6)
Let us examine polynomiat functions of order three. Due to the nature of the Hirota
derivativesD, we only have to take terms up to order six in the above expression. Ignoring
the odd degree terms in the resulting expression yields the Hirota equation
(24D7 + 72D3 — 96D D3 + 5D? 4 27D? D5 — 28D3D3 4 32D3 — 36D,D,)7 - T = 0.
(5.7)
Note that the first three terms constitute a multiple of the normal degree four KP equation.
If o = (01,...,0,), then let
"t

= .
001007 - - - doy,
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The above Hirota derivatives have the following action:

Di’r - T = 21947 — 8711371 + 6712772

D%r ST = 2Tp0T — 21272

D1D3t - T = 21317 — 21371

Dg’r - T = 21967 — 1211571 + 30792712 — 20713743

D%D%‘C T = 212127 — 4102171 — AT212T2 + 2T00T12 + 4721701
Dngr - T = 213337 — 6731271 + 6731712 — 273733

D%r - T = 21T — 21373

D4Dyt - T = 2T42T — 27470

Using the above, you can check that the polynomials

SP@ = S@ = X3 + Xox1 + X3
SPay = S@1 — Sy = 3x; — X3 — X1

SP(13) = S(13) — S(]_) = %xf — X2X1+ X3 — X1

do indeed satisfy (5.7). In addition, one can see that the Schur polynoiiajsand S ;s
are not solutions of (5.7).

Similarly, if you seek order four polynomial solutions, then taking the next terms in
(5.6) gives

(240D7 + 720D3 — 960D3 D1 + 50D2 + 270D? D3 — 280D3 D3 + 320D3 — 360D, D4
+4D8 4 60D1 D3 + 90D5 — 20D3 D3 — 240D D5 D3 + 160D3 D3
+90D2D,D, — 144D3D5)t - T = 0.

One can check for example, th&P 5 = S — S.1) = 1557 +X5 —X1¥3— 3x2+xzis @
solution of the above Hirota equation. In fact, we see that all symplectic polynomials
are tau functions for all Hirota polynomials (5.5). This is because from the above
fermionic formalism, all the symplectic Schur polynomials are generated through successive
application of the operators, defined by Jimbo and Miwa [1, equation (2.11)].

6. Conclusions

We have constructed a realization of symplectic and orthogonal Schur functions in terms of
certain vertex operators, the modes of which obey free fermionic relations. As a result, we
have been able to develop procedures for carrying out multiplication and plethysms of these
types of symmetric functions in terms of functions labelled by non-standard partitions. In
addition, we have constructed a set of infinite-order Hirota equations which admit symplectic
Schur polynomials as tau functions. It is not clear, however, as to whether this is no more
than a formal construct, of any intrinsic value or meaning for that matter.

Indeed, the relationship between the hierarchy generated by (5.5) and the ré&imal
hierarchies is unclear to the author. As it was generated from the orbit of the vdfyum
under the group associated wigh(co) and notsp(co), it does not seem to have anything
to do with the CKP hierarchy. We can only assume that it is obtainable through some
non-trivial transformation of the normal KP hierarchy.
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Appendix

In this appendix, we provide what seems to be a new proof of the Giambelli determinantal
form (1.7) for symplecticS-functions. In order to do this, we first need to prove the identity

( - — >
det
(l—Ziwj)(l wj/Zi) nxn

 Ticampan@ = wawp) (wa — wp)(L = zazp) (2,1 = 2, A1)
HZ,/=1(1_ zew) (L — wy/z) . .
We proceed by induction. The result is certainly true for= 1. Assume the result
is true for determinants of size, 3,...,n — 1. Denote the determinant on the left by
D, (w1, ..., wy,; 21,...,22). We consider both sides of (A.1) to be functionswf. The
idea is to show that both sides of have the same singularity structure. Certainly, they both
have poles at the same points, namely= zfl, j=1,...,n. Let us now show they have
the same residues at these poles. Expanding the left-hand side (LHS) along the top row,
we have

Dn(wlv-nvwn;Zlv--wZn) )
- (-1t D, 1( R )
= IO R T ST SR
= Q- zw)d—wi/z) e et ! !

whereZ; meansg; is omitted. From this we see that

—1)iz; R
reqLHS, z;) = (7)2"D,,_1(w2, R IV ST T ) B
(1_Z_,‘)

Turning to the right-hand side, let RHS f(wq)g, where

(wg —w2) -+ (w1 — wy) (A — wawz) - - - (L — wiwy,)
A-ziw1) - L= z,w) (A —wi/z1) - - (L — w1/z,)
T Macacocn@ = wawp) (wa — we) [Tagen = 2p29) (@ =2,

[Teet [Ti—2(@ — zewn) (X — wi/z)

fwy) =

Then
(zj —w2) - (zj — wy)
O = T A (A= /a0 — 2z (= 25/2)
A—-zjw2) - (A —zjwy,)
(1—z1zj) - (= 2,25)
(g (- wafz) -~ (1= w,/z))
O N o RER C o [ ot av) RRR Ry
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» (I—zjw2) - (1 —zjwy)
(A —z12)) - (A= zjmaz)) (A — zj4a1zj) - - - (L — 2,2))

Hence
(_1)jZ' H2<a<b<n (1 - wawb)(wa - wh) HK”“I,@' (1 - Zﬁzq)(z;l - Zc;l)
reSRHS z;) = g o -
(1_Zj) H:;} Hl:Z(l_kal)(l— wy/zk)
(=1)/z; )
= (:L_izjzj)anl(w27 ey Wy T2y ek e Ljyeees Z”)

by the inductive assumption. Thus the LHS and RHS of (A.1) have the same residue at
the polesw; = z;. A similar calculation shows that both sides also have the same residue
at the polesw; = zj‘l. Thus Liouville’s theorem tell us that LHS RHS is a constant
function, and since LHg-,, = 0 = RHS,,_,,,, this must be zero. Hence LHS RHS

and the induction is complete. Note that by multiplying itie row of the determinant on

the left-hand side of (A.1) by % z2, we have the equivalent identity

det( -2 ) = F(z; w) (A2)
(1—Ziwj)(1_wj/zi) n><n_ - |

where
. wepen L= wewp) (W, — wp) (1 — z425) (271 — 2, 1)
Fw=]]a- ZI?;’)HK bs e b b b )
p=1 [Ti=1(X = zew) (1 — wi/zx)
To prove the Giambelli formula, note that from (2.9) we have

_ dzdw _; . y P
spy = (_1)r(r 1)/2/ZTZ1./1_._Zr ]r(_wl) 1___(_wr) T (Zl)"'

xI(z)IM(wa) - - T'(w,)1
dzdw _j, - —i —i
:/ 7z M (mw) T (mw) T F(Z w)

w

XeXp(Zp.j(w{+-~-+w{—z{—~~—z,j)).

jz1

Using (A.2) to convertF(z; w) into a determinant, expressing the result as a sum over
the symmetric group of the elements of the determinant, and then performing the various
separate integrations using

_ dZ dw —ng__ —m (1_Z2) pj Jj_ ]
SPn—1m) = / w z (—w) 1—zw)1—w/z) exp(; 7(w Z ))

and combining the results back into the determinant (see [2] for a similar calulation in the
S-function case), we obtain the Giambelli formula (1.7).
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